Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Biomedical Engineering ; (6): 609-620, 2021.
Article in Chinese | WPRIM | ID: wpr-888219

ABSTRACT

Polymeric hydrogels have been widely researched as drug delivery systems, wound dressings and tissue engineering scaffolds due to their unique properties such as good biocompatibility, shaping ability and similar properties to extracellular matrix. However, further development of conventional hydrogels for biomedical applications is still limited by their poor mechanical properties and self-healing properties. Currently, nanocomposite hydrogels with excellent properties and customized functions can be obtained by introducing nanoparticles into their network, and different types of nanoparticles, including carbon-based, polymer-based, inorganic-based and metal-based nanoparticle, are commonly used. Nanocomposite hydrogels incorporated with polymeric micelles can not only enhance the mechanical properties, self-healing properties and chemical properties of hydrogels, but also improve the


Subject(s)
Biocompatible Materials , Hydrogels , Micelles , Nanocomposites , Polymers
2.
Journal of Zhejiang University. Medical sciences ; (6): 988-994, 2020.
Article in Chinese | WPRIM | ID: wpr-828506

ABSTRACT

OBJECTIVE@#To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.@*METHODS@#Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.@*RESULTS@#Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.@*CONCLUSIONS@#hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.


Subject(s)
Animals , Humans , Mice , Epithelial-Mesenchymal Transition , Exosomes , Gene Expression Profiling , Gene Expression Regulation , Mesenchymal Stem Cells , Cell Biology , Pulmonary Fibrosis , Therapeutics , Transforming Growth Factor beta1 , Genetics , Umbilical Cord , Cell Biology
3.
Journal of Southern Medical University ; (12): 988-994, 2020.
Article in Chinese | WPRIM | ID: wpr-828925

ABSTRACT

OBJECTIVE@#To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.@*METHODS@#Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.@*RESULTS@#Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.@*CONCLUSIONS@#hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.


Subject(s)
Animals , Humans , Mice , Epithelial-Mesenchymal Transition , Exosomes , Mesenchymal Stem Cells , Pulmonary Fibrosis , Transforming Growth Factor beta1 , Umbilical Cord
SELECTION OF CITATIONS
SEARCH DETAIL